125 research outputs found

    Atrophin proteins: an overview of a new class of nuclear receptor corepressors

    Get PDF
    The normal development and physiological functions of multicellular organisms are regulated by complex gene transcriptional networks that include myriad transcription factors, their associating coregulators, and multiple chromatin-modifying factors. Aberrant gene transcriptional regulation resulting from mutations among these elements often leads to developmental defects and diseases. This review article concentrates on the Atrophin family proteins, including vertebrate Atrophin-1 (ATN1), vertebrate arginine-glutamic acid dipeptide repeats protein (RERE), and Drosophila Atrophin (Atro), which we recently identified as nuclear receptor corepressors. Disruption of Atrophin-mediated pathways causes multiple developmental defects in mouse, zebrafish, and Drosophila, while an aberrant form of ATN1 and altered expression levels of RERE are associated with neurodegenerative disease and cancer in humans, respectively. We here provide an overview of current knowledge about these Atrophin proteins. We hope that this information on Atrophin proteins may help stimulate fresh ideas about how this newly identified class of nuclear receptor corepressors aids specific nuclear receptors and other transcriptional factors in regulating gene transcription, manifesting physiological effects, and causing diseases

    Inhibition of the Nicotinic Acetylcholine Receptors by Cobra Venom α-Neurotoxins: Is There a Perspective in Lung Cancer Treatment?

    Get PDF
    Nicotine exerts its oncogenic effects through the binding to nicotinic acetylcholine receptors (nAChRs) and the activation of downstream pathways that block apoptosis and promote neo-angiogenesis. The nAChRs of the α7 subtype are present on a wide variety of cancer cells and their inhibition by cobra venom neurotoxins has been proposed in several articles and reviews as a potential innovative lung cancer therapy. However, since part of the published results was recently retracted, we believe that the antitumoral activity of cobra venom neurotoxins needs to be independently re-evaluated

    Technical Variability Is Greater than Biological Variability in a Microarray Experiment but Both Are Outweighed by Changes Induced by Stimulation

    Get PDF
    INTRODUCTION: A central issue in the design of microarray-based analysis of global gene expression is that variability resulting from experimental processes may obscure changes resulting from the effect being investigated. This study quantified the variability in gene expression at each level of a typical in vitro stimulation experiment using human peripheral blood mononuclear cells (PBMC). The primary objective was to determine the magnitude of biological and technical variability relative to the effect being investigated, namely gene expression changes resulting from stimulation with lipopolysaccharide (LPS). METHODS AND RESULTS: Human PBMC were stimulated in vitro with LPS, with replication at 5 levels: 5 subjects each on 2 separate days with technical replication of LPS stimulation, amplification and hybridisation. RNA from samples stimulated with LPS and unstimulated samples were hybridised against common reference RNA on oligonucleotide microarrays. There was a closer correlation in gene expression between replicate hybridisations (0.86-0.93) than between different subjects (0.66-0.78). Deconstruction of the variability at each level of the experimental process showed that technical variability (standard deviation (SD) 0.16) was greater than biological variability (SD 0.06), although both were low (SD<0.1 for all individual components). There was variability in gene expression both at baseline and after stimulation with LPS and proportion of cell subsets in PBMC was likely partly responsible for this. However, gene expression changes after stimulation with LPS were much greater than the variability from any source, either individually or combined. CONCLUSIONS: Variability in gene expression was very low and likely to improve further as technical advances are made. The finding that stimulation with LPS has a markedly greater effect on gene expression than the degree of variability provides confidence that microarray-based studies can be used to detect changes in gene expression of biological interest in infectious diseases

    Prognostic value of increase in transcript levels of Tp73 ΔEx2-3 isoforms in low-grade glioma patients

    Get PDF
    Glial tumours are a devastating, poorly understood condition carrying a gloomy prognosis for which clinicians sorely lack reliable predictive parameters facilitating a sound treatment strategy. Tp73, a p53 family member, expresses two main classes of isoforms – transactivatory activity (TA)p73 and ΔTAp73 – exhibiting tumour suppressor gene and oncogene properties, respectively. The authors examined their expression status in high- and low-grade adult gliomas. Isoform-specific real-time reverse transcription-polymerase chain reaction was used for the analysis of Tp73 isoform transcript expression in a series of 51 adult patients harbouring glial tumours, in order to compare tumour grades with each other, and with non-tumoural samples obtained from epileptic patients as well. Our data demonstrate increase of TAp73 and ΔTAp73 transcript levels at onset and early stage of the disease. We also show that ΔEx2–3 isoform expression in low-grade tumours anticipates clinical and imaging progression to higher grades, and correlates to the patients' survival. Expression levels of P1 promoter generated Tp73 isoforms – and particularly ΔEx2–3 – indeed allow for prediction of the clinical progression of low-grade gliomas in adults. Our data are the first such molecular biology report regarding low-grade tumours and as such should be of help for sound decision-making

    Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten

    Get PDF
    Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset

    Search for non-Gaussian events in the data of the VIRGO E4 engineering run

    Get PDF
    International audienc

    Embryonal neural tumours and cell death

    Full text link

    The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma

    Full text link

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations

    Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma

    Get PDF
    Background: Epigenetic alterations and loss of heterozygosity are mechanisms of tumor suppressor gene inactivation. A new carcinogenic pathway, targeting the RAS effectors has recently been documented. RASSF1A, on 3p21.3, and NORE1A, on 1q32.1, are among the most important, representative RAS effectors. Methods: We screened the 3p21 locus for the loss of heterozygosity and the hypermethylation status of RASSF1A, NORE1A and BLU ( the latter located at 3p21.3) in 41 neuroblastic tumors. The statistical relationship of these data was correlated with CASP8 hypermethylation. The expression levels of these genes, in cell lines, were analyzed by RT-PCR. Results: Loss of heterozygosity and microsatellite instability at 3p21 were detected in 14% of the analyzed tumors. Methylation was different for tumors and cell lines (tumors: 83% in RASSF1A, 3% in NORE1A, 8% in BLU and 60% in CASP8; cell lines: 100% in RASSF1A, 50% in NORE1A, 66% in BLU and 92% in CASP8). In cell lines, a correlation with lack of expression was evident for RASSF1A, but less clear for NORE1A, BLU and CASP8. We could only demonstrate a statistically significant association between hypermethylation of RASSF1A and hypermethylation of CASP8, while no association with MYCN amplification, 1p deletion, and/or aggressive histological pattern of the tumor was demonstrated. Conclusion: 1) LOH at 3p21 appears in a small percentage of neuroblastomas, indicating that a candidate tumor suppressor gene of neuroblastic tumors is not located in this region. 2) Promoter hypermethylation of RASSF1A and CASP8 occurs at a high frequency in neuroblastomas.This research was supported in part by grants from the Departamentos de Salud y de Educación del Gobierno de Navarra, Pamplona; Fondo de Investigación Sanitaria (PI031356), and Ministerio de Ciencia y Tecnología y Fondo Europeo de Desarrollo Regional (BFI2003-08775), Madrid
    corecore